Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
Anal Chem ; 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: covidwho-2133134

RESUMEN

A high-throughput, accurate screening is crucial for the prevention and control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current methods, which involve sampling from the nasopharyngeal (NP) area by medical staffs, constitute a fundamental bottleneck in expanding the testing capacity. To meet the scales required for population-level surveillance, self-collectable specimens can be used; however, its low viral load has hindered its clinical adoption. Here, we describe a magnetic nanoparticle functionalized with synthetic apolipoprotein H (ApoH) peptides to capture, concentrate, and purify viruses. The ApoH assay demonstrates a viral enrichment efficiency of >90% for both SARS-CoV-2 and its variants, leading to an order of magnitude improvement in analytical sensitivity. For validation, we apply the assay to a total of 84 clinical specimens including nasal, oral, and mouth gargles obtained from COVID-19 patients. As a result, a 100% positivity rate is achieved from the patient-collected nasal and gargle samples, which exceeds that of the traditional NP swab method. The simple 12 min pre-enrichment assay enabling the use of self-collectable samples will be a practical solution to overcome the overwhelming diagnostic capacity. Furthermore, the methodology can easily be built on various clinical protocols, allowing its broad applicability to various disease diagnoses.

2.
Energies ; 15(9):3232, 2022.
Artículo en Inglés | MDPI | ID: covidwho-1820214

RESUMEN

Ventilation is becoming increasingly important to improve indoor air quality and prevent the spread of COVID-19. This study analyzed the indoor air quality of office spaces, where occupants remain for extended periods, among multi-use facilities with an increasing need for ventilation system application. A 'tool for office space CO2 prediction and indoor air quality improvement recommendation';was developed. The research method was divided into four steps. Step 1: Analysis of indoor air quality characteristics in office spaces was carried out with a questionnaire survey and indoor air quality experiment. Based on the CO2 concentration, which was found to be a problem in the indoor air quality experiment in the office space, Step 2: CO2 concentration prediction tool for office spaces, which requires inputs of regional and spatial factors and architectural and equipment elements, was developed. In Step 3: Development and verification of prediction tool considering economic feasibility, the cost of energy recovery ventilation systems based on the invoices of the energy recovery ventilation manufacturers was analyzed. In Step 4: Energy recovery ventilation proposal and indoor CO2 forecast, Office Space B, which can accommodate up to 15 people, was derived as an example of the proposed tool. As a result of the prediction, the optimal air volume of the energy recovery ventilation was determined according to the 'office CO2 prediction and indoor air quality improvement recommendations';. This study introduced simple tools, which can be used by non-experts, that are capable of showing changes in indoor air quality, CO2 concentration and cost according to activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA